Bagaimana Proses Terbentuknya Planet Jupiter?

Meskipun planet mengelilingi bintang di galaksi, bagaimana bentuknya tetap menjadi bahan perdebatan. Terlepas dari kekayaan dunia di tata surya kita, para ilmuwan masih belum yakin bagaimana planet dibangun. Saat ini, dua teori sedang memperebutkan peran juara.

Sementara yang pertama, akresi inti, bekerja dengan baik dengan pembentukan bidang terestrial. Para ilmuwan mengalami kesulitan untuk menggabungkannya dengan planet raksasa seperti Jupiter. Model yang lebih baru yang dikenal sebagai ketidakstabilan disk dapat membantu memecahkan beberapa masalah yang gagal diatasi oleh pertambahan inti.

Dengan berat 2,5 kali massa planet tata surya lainnya, Jupiter memainkan peran penting dalam pembentukan dan evolusi saudara kandungnya. Teori baru tentang tata surya awal menunjukkan bahwa Jupiter mungkin telah bergerak, mengaduk material. Tarian kompleks raja planet mungkin secara langsung memengaruhi pembentukan Mars dan berperan dalam pemboman planet berbatu.

Model Akresi Inti

Kira-kira 4,6 miliar tahun yang lalu, tata surya merupakan awan debu dan gas yang dikenal sebagai nebula surya. Gravitasi meruntuhkan materi ke dalam dirinya sendiri saat ia mulai berputar, membentuk matahari di tengah nebula.

Dengan terbitnya matahari, material yang tersisa mulai menggumpal. Partikel kecil bergabung bersama, terikat oleh gaya gravitasi, menjadi partikel yang lebih besar. Angin matahari menyapu elemen yang lebih ringan, seperti hidrogen dan helium, dari daerah yang lebih dekat. Hanya menyisakan bahan berbatu yang berat untuk menciptakan dunia terestrial yang lebih kecil. Tapi lebih jauh lagi, angin matahari berdampak lebih kecil pada elemen yang lebih ringan. Memungkinkan mereka untuk bergabung menjadi raksasa gas. Dengan cara ini, asteroid, komet, planet, dan bulan diciptakan.

Model akresi inti menunjukkan bahwa inti planet yang berbatu terbentuk terlebih dahulu. Kemudian mengumpulkan elemen yang lebih ringan di sekitarnya untuk membentuk kerak dan mantelnya. Untuk dunia berbatu, elemen yang lebih ringan membangun atmosfernya.

Pengamatan exoplanet tampaknya mengkonfirmasi pertambahan inti sebagai proses pembentukan yang dominan. Bintang dengan lebih banyak “logam” – istilah yang digunakan astronom untuk unsur selain hidrogen dan helium. Di intinya memiliki lebih banyak planet raksasa daripada sepupu mereka yang miskin logam. Menurut NASA, pertambahan inti menunjukkan bahwa dunia yang kecil dan berbatu lebih umum daripada raksasa gas yang lebih masif.

Penemuan planet raksasa tahun 2005 dengan inti masif yang mengorbit bintang mirip matahari HD 149026 adalah contoh planet ekstrasurya. Yang membantu memperkuat kasus pertambahan inti.

“Ini adalah konfirmasi dari teori akresi inti untuk pembentukan planet dan bukti. Bahwa planet semacam ini seharusnya ada dalam jumlah yang banyak”. Kata Greg Henry dalam siaran persnya. Henry, seorang astronom di Tennessee State University, Nashville, mendeteksi peredupan bintang.

Satelit untuk Exoplanet

Pada 2017, Badan Antariksa Eropa berencana meluncurkan Satelit ExOPlanet (CHEOPS) yang mengkarakterisasi. Yang akan mempelajari exoplanet dalam berbagai ukuran dari super-Bumi hingga Neptunus. Mempelajari dunia yang jauh ini dapat membantu menentukan bagaimana planet-planet di tata surya terbentuk.

“Dalam skenario akresi inti, inti planet harus mencapai massa kritis. Sebelum dapat menghasilkan gas dengan cara yang tidak terkendali,” kata tim CHEOPS.

“Massa kritis ini bergantung pada banyak variabel fisik, di antaranya yang paling penting adalah laju pertambahan planetesimal.”

Dengan mempelajari bagaimana planet menumbuhkan materi, CHEOPS akan memberikan wawasan tentang bagaimana dunia tumbuh.

Model ketidakstabilan disk

Untuk raksasa gas masif seperti Jupiter, bagaimanapun, pertambahan inti membutuhkan waktu terlalu lama. Awan materi di sekitar matahari hanya berlangsung dalam waktu singkat, entah dikumpulkan oleh planet atau menguap seluruhnya.

“Planet raksasa terbentuk sangat cepat, dalam beberapa juta tahun”. Kata Kevin Walsh, peneliti di Southwest Research Institute di Boulder, Colorado, kepada Space.com. “Itu menciptakan batas waktu karena cakram gas yang mengelilingi matahari hanya bertahan 4 hingga 5 juta tahun.”

Sementara planet berbatu punya banyak waktu untuk membangun atmosfernya yang lebih berat. Atau mengumpulkannya dari material yang menabrak planet, atmosfer raksasa gas terlalu ringan dan menghilang terlalu cepat. Misalnya, Jupiter hampir seluruhnya terdiri dari hidrogen, dengan sekitar 10 persen volumenya terdiri dari helium. Jejak kecil elemen lain juga ada di atmosfer Jupiter, tetapi sebagian besar massanya dipegang oleh dua elemen dasar ini. Ilmuwan harus mencari cara baru untuk membangun planet yang lebih besar.

Menurut teori yang relatif baru, ketidakstabilan piringan, gumpalan debu dan gas terikat bersama di awal kehidupan tata surya. Seiring waktu, gumpalan ini perlahan memadat menjadi planet raksasa. Planet-planet ini dapat terbentuk lebih cepat daripada rival pertambahan intinya. Terkadang hanya dalam waktu seribu tahun, memungkinkan mereka untuk menjebak gas-gas ringan yang menghilang dengan cepat. Mereka juga dengan cepat mencapai massa penstabil orbit yang membuat mereka tidak bergerak maut ke matahari.

Seperti semua planet, tabrakan yang sering terjadi meningkatkan suhu di Jupiter. Bahan padat tenggelam ke tengah, membentuk inti. Beberapa ilmuwan berteori bahwa inti hari ini mungkin berupa bola cairan panas yang meleleh. Sementara penelitian lain menunjukkan bahwa itu bisa berupa batuan padat 14 hingga 18 kali massa Bumi.

Pertambahan kerikil

Tantangan terbesar untuk pertambahan inti adalah waktu. Membangun raksasa gas yang sangat besar dengan cukup cepat untuk mengambil komponen yang lebih ringan dari atmosfer mereka. Penelitian terbaru tentang bagaimana benda-benda berukuran kerikil yang lebih kecil bergabung bersama. Untuk membangun planet raksasa hingga 1000 kali lebih cepat daripada penelitian sebelumnya.

“Ini adalah model pertama yang kami ketahui yang Anda mulai dengan struktur yang cukup sederhana. Untuk nebula matahari tempat planet terbentuk, dan berakhir dengan sistem planet raksasa yang kita lihat”. Penulis utama studi Harold Levison, seorang astronom. di Southwest Research Institute (SwRI) di Colorado, kepada Space.com pada 2015.

Pada tahun 2012, peneliti Michiel Lambrechts dan Anders Johansen dari Lund University di Swedia mengusulkan bahwa kerikil kecil. Setelah dihapuskan, memegang kunci untuk membangun planet raksasa dengan cepat.

“Mereka menunjukkan bahwa kerikil sisa dari proses pembentukan ini, yang sebelumnya dianggap tidak penting. Sebenarnya bisa menjadi solusi besar untuk masalah pembentukan planet,” kata Levison.

Levison dan timnya mengembangkan penelitian itu untuk memodelkan lebih tepat. Bagaimana kerikil kecil dapat membentuk planet yang terlihat di galaksi saat ini. Sementara simulasi sebelumnya, baik objek berukuran besar maupun sedang memakan sepupu mereka yang berukuran kerikil. Dengan kecepatan yang relatif konstan, simulasi Levison menunjukkan bahwa objek yang lebih besar bertindak lebih seperti pengganggu. Mengambil kerikil dari massa berukuran sedang untuk tumbuh jauh lebih cepat. menilai.

“Objek yang lebih besar sekarang cenderung menyebarkan objek yang lebih kecil lebih banyak daripada objek yang lebih kecil menyebarkannya kembali. Sehingga objek yang lebih kecil akhirnya tersebar keluar dari piringan kerikil”. Kata rekan penulis studi Katherine Kretke, juga dari SwRI, kepada Space.com. “Orang yang lebih besar pada dasarnya menindas yang lebih kecil sehingga mereka bisa memakan semua kerikilnya sendiri. Dan mereka dapat terus tumbuh untuk membentuk inti planet raksasa.”

Planet menari

Awalnya, para ilmuwan mengira bahwa planet terbentuk di sekitar tempat yang sama dengan tempat mereka tinggal saat ini. Penemuan exoplanet mengungkapkan bahwa, setidaknya di sekitar bintang lain, beberapa dunia pindah dari lingkungan tempat kelahirannya. Eksoplanet pertama adalah ‘Jupiter panas’, raksasa gas masif yang lebih besar dari Jupiter yang mengorbit bintang mereka. Dalam beberapa hari atau bahkan jam. Dunia-dunia ini tidak mungkin terbentuk pada tempatnya, karena suhu terlalu tinggi untuk mengumpulkan hidrogen dan helium. Para ilmuwan dengan cepat menyimpulkan bahwa setidaknya beberapa raksasa gas di alam semesta bermigrasi.

Pada saat yang sama, tata surya menderita dari apa yang disebut banyak orang sebagai ‘masalah Mars kecil’. Sementara simulasi pembentukan planet mencakup semua dunia lain. Dalam ukuran dan lokasi yang tepat, tidak ada yang dapat mereproduksi planet merah secara memadai. Sebaliknya, menciptakan dunia yang jauh lebih kecil di orbit Mars.

Pada 2011, para ilmuwan meluncurkan model Grand Tack. Dalam model baru, Jupiter bergerak ke dalam menuju matahari, menghamburkan material di depannya. Akhirnya, ia melakukan perjalanan ke tempat Mars melakukan perjalanan hari ini, jarak sekitar 1,5 kali orbit Bumi.

Ditinggal sendirian, Jupiter mungkin telah menembus tata surya bagian dalam. “Orang-orang memodelkan bagaimana mencegah Jupiter bermigrasi ke dalam menuju matahari,” kata Walsh, salah satu ilmuwan yang mengusulkan Grand Tack.

Walsh dan rekan-rekannya menemukan bahwa memasukkan Saturnus sebagai teman seperjalanan menyebabkan Jupiter mundur, seperti perahu layar yang tertiup angin. Kedua planet akhirnya kembali ke tata surya luar dan menetap di orbit mereka saat ini.

Tetangga yang baik

Karena planet masif terbentuk begitu awal dalam sejarah tata surya. Kemungkinan besar hal itu berdampak pada penciptaan dan jalur planet lain. Planet itu sendiri akan memiliki massa yang cukup untuk mengubah jalur planet bayi lain yang melakukan perjalanan di dekatnya. Mengirim mereka membelok ke jangkauan terluar tata surya atau menuju kematian yang membara di dekat matahari. Komet dan asteroid juga bisa terlempar keluar.

Jupiter sering dipuji sebagai perisai bagi Bumi, tetapi mungkin tidak selalu demikian. Studi terbaru menunjukkan bahwa raksasa gas mempercepat skala waktu dampak. Di awal kehidupan tata surya, Yupiter melemparkan material pontang-panting. Menghujani sebagian di planet-planet kebumian sambil melemparkan sebagian darinya sepenuhnya keluar dari tata surya. Namun, dalam sistem tanpa Jupiter, dampaknya lebih lemah tetapi terus berlanjut sepanjang masa planet. Itu karena sebagian besar bebatuan terjebak dalam orbit mengelilingi matahari tanpa ada planet raksasa yang mengesampingkannya.

“Planet kebumian pada dasarnya tidak memberi mereka cukup tendangan untuk meninggalkan sistem”. Elisa Quintana, seorang ilmuwan peneliti di NASA Ames Research Center, mengatakan kepada Space.com. Quintana mempelajari peran planet seukuran Jupiter dan dampaknya pada dunia terestrial.

“Untuk tata surya kita, Jupiter memiliki pengaruh yang besar,” katanya.…